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Electromagnetic Model of a Radial-Resonator
Waveguide Diode Mount

MAREK E. BIALKOWSKI, SENIOR MEMBER, IEEE

Abstract —An electromagnetic model of a class of waveguide diode
mounts that incorporate a radial resonator with the diode arbitrarily
positioned is derived. The model is tested through comparison of numerical
and experimental results for the input impedance of the mount. The tests
show good agreement between theory and experiment and indicate that the
model may be especially useful in investigating the effects of an off-
centered positioning of the diode.

I. INTRODUCTION

N THE SHF and EHF ranges the design of oscillators

with Gunn or IMPATT diodes requires a special type of
diode mount in order to overcome problems associated
with conduction losses, which prevent oscillation. Use is
made of a cavity created close to the diode. The cavity can
have a shape different from that of the enveloping wave-
guide. For rectangular waveguides, practical reasons usu-
ally dictate the choice of a radial cavity of resonator. Two
realizations of the radial resonator are (i) a cap resonator
mount with a thin supporting post in a full-height wave-
guide [1], [2] and (ii) a thick post mount in a reduced-height
waveguide [3], [4].

The design of oscillators with radial cavities requires
some experimental or theoretical knowledge of the input
impedance of the mount since it has to be matched to the
impedance of the active device to obtain oscillation. Theo-
retical models of radial-resonator diode mounts which are
adequate for most practical purposes have been presented
in [4]-[7]. These models are restricted to a diode centrally
located under a cap or thick post. This restriction is not
severe since most radial-resonator mounts utilize the cen-
tral location for the diode. However, these models are not
suitable for studying the effects of diode misalignment.
They also do not apply to those radial-resonator mounts in
which the diode is intentionally off-centered and is often
in a position at the circumference of the radial resonator
[3]. The effects of off-centered positioning of the diode
may be unimportant when the post or cap cross-sectional
dimensions are small. This is not the case when these
dimensions become comparable to the wavelength.

A simplified analysis of the effects of off-centered posi-
tioning of the diode in a radial cavity having dimensions
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Fig. 1. Radial-resonator diode mount in a rectangular waveguide.

comparable to the wavelength has been carried out in [11].
By using a simple model of an open-circuited radial line it
was shown that off-centered positioning of the diode can
produce resonances of radial azimuthal modes. It was also
indicated that these resonances can affect in different ways
the design of an oscillator or amplifier. Accurate analysis
of the effects of off-centered positioning of the diode was
not possible with this model since radiation from the radial
resonator was neglected.

In the paper presented here an electromagnetic model of
a radial-resonator diode mount is developed which takes
into account radiation from the radial resonator so that a
more accurate analysis of the effects of different diode
positioning can be carried out.

II. METHOD OF MODELING

The configuration of the mount investigated is shown in
Fig. 1. The mount and the waveguide are assumed to be
formed by a perfect conductor. The structure can be
viewed as composed of three cylindrical regions: 1—below
the cap where the diode is usually located, II—above the
cap where the supporting post is located, and III—a
waveguide region outside the cylindrical volume occupied
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by the mount to which power from the diode is coupled.
Each of these regions can be assumed to be filled with
lossless dielectric material described by the real constants
€1, €5, and €.

The aim of the analysis is the determination of the
driving-point impedance seen by the diode at an arbitrary
position under the cap. This impedance is defined as the
ratio of the voltage to the current at the cylindrical surface
enveloping the diode [5]. In this definition the voltage and
the associated electric field are assumed to be independent
variables and the current is a variable to be determined.

To find the required current a three-dimensional electro-
magnetic problem has to be solved. For purposes of solv-
ing this field problem two cylindrical systems of coordi-
nates are introduced. One (r, ¢, y) is associated with the
mount; the other (r;, ¢, y) is associated with the point at
which the input impedance is calculated. The two systems
are shown in Fig. 1.

In order to determine the driving-point impedance a
field matching technique is used. The technique consists of
three steps. In the first step field expansions with unknown
coefficients in the individual regions are formed. In the
second step the expansion coefficients and fields are deter-
mined by applying continuity conditions for the fields at
the common boundary of the three regions. In the last step
the input impedance is determined by using the usual
voltage—current ratio definition. As the driving-point
impedance has to be found at an arbitrary position, form-
ing general expansions for the fields requires solving two
scattering problems, one being internal and the other ex-
ternal to the cylindrical region r < R.

The internal problem for the radial regions below and
above the cap can be considerably simplified if the heights
of these regions can be assumed to be electrically small
(smaller than half a wavelength). In this case the field
below and above the cap can be approximated by a field
which is uniform with height such that TM radial modes
are sufficient to represent the field in both regions. The
assumption is justified for post structures where the height
of region II is zero or for a thick cap structure for which
the heights of regions I and II are small. Further analysis is
limited to these cases.

The rectangular waveguide region III can be regarded as
a loaded radial guide. Since the field at the boundary
r = R of region III varies with angle ¢ and height y the
TM modes are insufficient to satisfy the boundary condi-
tions and both TM and TE radial modes must be used
[10]. The only simplification used in deriving fields in
region III results from the condition that the ¢ component
of the electric field be zero at »r = R, which is due to the
assumption of fields uniform with respect to height in
regions I and 1T and due to the condition that the tangen-
tial component of the electric field vanish on the conduct-
ing surface of the mount structure.

The problem of determining general forms of fields in
regions I, II, and III can be considered as a scattering
problem. The solutions to the internal and external scatter-
ing problems are presented below.
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A. Fields Below the Cap

The field in the radial resonator below the cap can be
considered as a superposition of two fields: one due to the
voltage source applied at the cylindrical surface r=a
(enveloping the diode) and the other due to induced sources
located outside the cylinder = R. Assuming that the
height of the resonator is smaller than half a wavelength
(which is usually the case), the ficld can be approximated
by the uniform-with-height field, which can be expanded
in terms of only TM radial waves [10]. The expansion
coefficients can be found by considering the y component
of the electric field.

The y component of the electric field can be sought in
the form

El=E'+E! 1)
where E is the voltage source component and E, is the
induced source component. The voltage source component
is associated with the wave traveling from the cylinder
r, = a outwards and is given by

V HO(k,r
g ¥ HO ) o
g H?(ka)
where H{® is the Hankel function and k, is a wavenumber
for the medium in volume 1.

The induced component E, can be considered as the
superposition of the subcomponents E), having depen-
dence e’'* at r = R and equal to zero at r; = a and can be
represented by

L
E= Y AE, 3)
I=—L
The individual subcomponents EJ, can be represented in
the form

L
Ey=CrHP (kin)+ X Cpl(kyr)-e? (4)
p=—1L
where J, 1s the Bessel function and C; and C,, are expan-
sion coefficients yet to be determined. The second term in
(4) represents waves traveling from the cylinder r = R
inwards. The first term represents the wave which is re-
flected from the cylinder r, = a and travels outwards. The
wave reflected from the cylinder r; = a is approximated by
a radially symmetric wave. This approximation is based on
the assumption that the radius a of the post is small. Note,
that in expression (4) two cylindrical systems of coordi-
nates are used to describe the field. Also note that in (4)
and in the following expressions infinite series are trun-
cated and include only 2L +1 ¢-harmonics.
The coefficients C; and C,, can be calculated by using
conditions that E! be zero at r,=a and equal ¢/ at
r = R. The conditions can be written as follows:

27
_[0 Ey’,(r1=a)dq51=()

1 27 . _
—2;f0 EL(r=R)e " dp=35),

p=—La"'aL

(5)
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where §,, is the Kronecker delta. Note that only a condi-
tion on the average value of E,, at ry=a is used. The
higher order effects of the variation of E;, at r,=a are
neglected. Equations (5) lead to a system of linear alge-
braic equations which produce the following expressions
for coefficients C; and C,,:

Lo I (ko) HO (kyR)
C,=J(kyry)e™ [ { J(kR) Y, L £
) ] 170 ! 1 » Jp(klR)

Héz)(kla)
- Jo(kla) }

Cpp= (8, = C L (kyre) HO (kyR) e %) [T (k,R).  (6)

Having derived the general form of the y component of
the electric field in the resonator, the remaining compo-
nents can be determined by using relationships which hold
between the individual components of the TM radial field
[10].

In determining the input impedance of the mount there
is a need to know only the ¢ component of the magnetic
field. For the TM field uniform in the y direction the ¢
component of the magnetic field is given by

; I
H!= —J E
* Zk, or

™

where Z, is the wave impedance for the medium in the
resonator and j=y —1. By using (7) the ¢ component of
the magnetic field at » = R can be shown to be given by

LV H/®(kR)

- 4
Hi(r=R)=—= ———J(kr)e/’("f_""’)
¢ VARNE Héz)(kla) e )
L L
+ X A4 Y e’ (8)
I=—L m=-L
where

= Cl-]m(kl’"o)eﬁjm¢°H,Z(2)(k1R) + Clerrlt(klR)

and the prime indicates a derivative. Similarly, the average
value of the ¢ component of the magnetic field at r,=a
can be shown to be given by

1 27

- I, —

277/0 qu(rl a) do,
—J [V Hg®(k,a)
Z, | g HP(ka)

L
+ ) AI(CIH()/(Z)(kla)+ Ji (kya)
I=—L

L
> Clme(kl"o)ejm%)}- )

m=—1L

B. Fields Above the Cap

Volume II above the cap again forms a radial resonator -

structure. By making the assumption that the field does
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not vary along the height of the resonator, the field can
again be represented by the TM radial waves [10]. For the
centrally located post the scattering problem can be easily
solved. The y component of the electric field is given by

L
El'= ), De/®
I=—L
Hl(z)(kz")-ll(kzb)“ J/(kzr)Hl(z)(kzb)
HII(Z)(sz)JI(kzb) - J,’(sz)H,a)(kzb

] (10)

where k, is a wavenumber for region II. The ¢ component
of the magnetic field is given by

_j L )
Hi'=—= ). D
2 [=—L

H/® (kyr)J,(kyb) = J/ (kor ) HP (kyb)
H/®(k,R)J,(kyb)— J7 (k,RYH® (k)

(11)

C. Fields Outside the Cylinder

It can be seen from the derivations of the field in
volumes I and II that the only nonvanishing tangential
components of the field at the common boundary » = R
with region III are the y component of the electric field
and the ¢ component of the magnetic field. These compo-
nents are continuous across the surface » = R. Region III
can be regarded as a loaded parallel-plate radial guide with
the field generally given in terms of TM and TE radial
waves. Because the field in volume III varies with height
and on the circumference of the cylinder r=R, the
boundary conditions cannot be satisfied by the TM radial
waves alone and both TM and TE waves must be used.
(The representation of the field in terms of TM radial
waves is possible only when the field is axially symmetric
[51)

In order to determine the input impedance of the mount,
only expressions for the tangential components of the field
at r = R need be known. A convenient representation for
the tangential components of the field at » = R which uses
scattering coefficients of the TM and TE waves is given by

I Y. €on Vé‘
EM =} ?cos(kyny) >
n=0 [=—L
m_ e €on L L
Hy = 2 ? Sln(kyny) 2.4 FHnl Z fn[mejm¢
n=1 I=-L m=—1L

I
FE, e

L -k n(]l)
Y |FE, —25—
e I (¥
LR L L
H;II: Z _IiﬁCOS(kynJ’) )> FEnl Z Snlmejm¢

)
n=0 I=—-L m=—L

+ FH,, |e/"*

Lok, (jm)
+FHnl Z er2_

m=—L

(12)

fnlmejrml)
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where ¢, 1s the Neumann factor, k, =nz/B, and 2=
k2~ k2 E,;, FH, are expansion coefficients and s,
and f are scattering coefficients for TM and TE radial
waves respectively.

The scattering coefficients are as yet unknown and have
to be determined before setting continuity equations for
the expansion coefficients FE,;, and FH,,. The solution to
this problem is not straightforward due to circular—rectan-
gular boundaries of volume III. The difficulty associated
with the circular—rectangular geometry of volume III can
be overcome by using a filamentary approximation of the
sources of TM and TE radial waves. The solution based on
this type of approximation is presented in the Appendix.

D. Field Matching

At this stage all the required expansions for the field in
volumes I, I1, and at the boundary of volume III have been
formed and the remaining part of the field-matching tech-
nique is the determination of the expansion coefficients.
These coefficients can be found after applying the continu-
ity conditions for the tangential components of the field at
the common boundary r = R.

The continuity conditions imply the following system of
functional equations:

E; for 0<y<g
E}I,H= 0 g<y<g+t
E} g+i<y<B
s=H" for 0<y<g
HII H" for g+i1<y<B (13)
EM=0 for 0<y<B.

These equations can be reduced to a system of linear
algebraic equations for the coefficients 4,, D,, FE,,, FH,,
after applying the standard Galerkin procedure [9]. In this
procedure both sides of the equations in (13) are multi-
plied by the y or ¢ spatial harmonics and integrated
within the bounds in which the orthogonality properties of
the harmonics can be used. In order to reduce the number
of unknowns, the coefficients FE,;,, FH,, can be elimi-
nated. First it can be easily noticed that coefficients FH,,
can be expressed in terms of coefficients FE,; by using the
condition that the ¢ component of the electric field be
zero at ¥ = R.

Finally coefficients FE,; can be expressed in terms of
coefficients 4, and D, by using boundary conditions for
the y component of the electric field and the ¢ component
of the magnetic field at r = R. The resulting equations for
coefficients A,, D, can be solved by using the standard
Gauss elimination method.

E. Input Impedance of the Mount

Having determined the expansion coefficients of the
fields, the driving-point impedance of the mount can be
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Fig. 2. Theoretical results for the input impedance of the centrally
excited thick post mount being centrally positioned in the match-
terminated S-band guide. Dimensions: 4 =72 mm, B =34 mm, S =36
mm, R=5/=175 mm, g=5 mm, r=29 mm, =0 mm. Re-
sults obtained by including: one ¢ harmonic ---; five ¢ harmonics
X X. X indicate 0.2 GHz frequency step.

found by using the following expression:

vV vV
Zn=7=

I 2a
a/(; Hy(r,=a)d¢,

(14)

where [7"H(r, = a)d¢, is given by (9).

III. EXPERIMENTAL VERIFICATION

Based on the theory described above a computer algo-
rithm for determining the input impedance of the radial-
resonator waveguide mount with an arbitrary position of
the diode has been developed. A number of experiments
have been performed to investigate the limits of the model.

First, the model has been tested for mounts centrally
excited. A study has been undertaken to investigate con-
vergence of the solution for the input impedance versus the
number of ¢ circumferential harmonics used in calcula-
tions. During the tests one, three, five, seven, and nine ¢
harmonics (exp(jn¢) n=0,1,2, - ) were used for calcu-
lating the input impedance. The tests showed that the
convergence of the solution was quite fast and that for five
harmonics the error was less than 1 percent. Inclusion of
seven and nine harmonics required considerably greater
time for calculations with only negligible improvement in
the accuracy for the impedance. Therefore to obtain accu-
rate results it was decided to use only five ¢ harmonics in
further calculations.

The results obtained by including one and five ¢ har-
monics for the centered and off-centered cases of a thick
post are presented in Figs. 2 and 3. Note that the values
for the input impedance are normalized to 50 Q. It can be
seen that for the centrally positioned post the results for
the input impedance are almost identical. The negligible
difference cannot be observed without magnifying Fig. 2.
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Fig. 3. Theoretical results for the input impedance of the centrally
excited thick post mount being positioned close to the wall in the
match-terminated S-band guide. Dimensions as in Fig. 2 but with
S =18 mm. Results obtained by including: one ¢ harmonic - -

X. X indicate 0.2 GHz frequency step.

- five ¢
harmonics X

-1
Fig. 4. Theoretical results for the input impedance of the centrally
excited cap-resonator mount being centrally positioned in the match-
terminated S-band guide. Dimensions: 4 =72 mm, B =34 mm, S =36
mm, R=17.5 mm, »=35 mm, g=35 mm, =35 mm, r,=0 mm.
Results obtained by including: one y harmonic in region IT X X
four y harmonics — o —-oo. o X indicate 0.2 GHz frequency step.

For the post positioned off-center and located close to
one of the waveguide walls the results depend on the
number of circumferentially varying harmonics included in
the calculations. In particular the results with five ¢ har-
monics reveal the presence of the damped resonance at
around 3.3 GHz. This resonance is not observed when the
field in the cylindrical volume r < R is approximated by
an axial field.

Next, the assumption made in the present theory that
the field above the cap can be approximated by the uni-
form-with-height field was tested. Tests were restricted to
the case of a cap mount being centrally positioned in the
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Fig. 5. Comparison between theoretical and experimental values of the
input impedance of the off-center excited thick post mount in the
match-terminated S-band guide. Dimensions as in Fig. 2 but with
S=31 mm, 7, =5 mm, ¢, = 0°. Theoretical results X X experi-
mental results —o—o o, o X indicate 0.2 GHz frequency step.

waveguide and centrally excited. For this case the field in
the vicinity of the mount could be assumed axially sym-
metric so that the algorithm developed in [5], which takes
into account variation of the field in regions I and II,
could be used. Comparison between results for the input
impedance of the cap-resonator mount with a relatively
high region above the cap, obtained with one y harmonic
in region IT using the algorithm developed here and four y
harmonics (cos(k,,y) n=0,1,2,3) using the algorithm
developed in {5], is shown in Fig. 4.

It can be seen that the results do not vary appreciably
with the number of y harmonics used in the whole band of
the single mode operation of the rectangular waveguide.
The slight difference observed is apparent as shifting of the
impedance points in the frequency domain.

In the following step the model was tested for mounts
that were excited off center. These tests were supported by
measurements of the input impedance of the mount. In
order to avoid problems with mechanical tolerances, a
large-scale model of the mount comprising a section of
S-band waveguide (cross section: 72 mmX 34 mm) with
replaceable radial resonators was built.

To measure the input impedance of the mount a coaxial
entry of 10 mm outside diameter with a 3 mm center
conductor connected to an N-type plug was constructed at
the center of the bottom wall of the waveguide. Thick
posts and cap resonators could be attached to the de-
mountable top wall of the waveguide. A generator with a
slow frequency sweep was used so that no sharp reso-
nances were overlooked. The impedances were recorded
using an HP 8410 network analyzer.

The theoretical and experimental results for the thick
post and cap-resonator mount, with dimensions the same
as before but now with the off-center form of excitation,
are presented in Figs. 5 and 6. Good agreement between
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Fig. 6. Comparison between theoretical and experimental values of the
mput impedance of the off-center excited cap-resonator mount in the
match-terminated S-band guide. Dimensions as in Fig. 4 but with
S'=31 mm, r, =5 mm, ¢, = 0°. Theoretical results X X experi-
mental results — o —o o. o X indicate 0.2 GHz frequency step.

theory and experiment can be noted. Although the excita-
tions of the mounts are only slightly different from those
considered before, the curves shown in Figs. 5 and 6 are
significantly different from those in Figs. 2 and 4. These
differences can be explained by resonances of the circum-
ferentially varying TM radial modes, observed earlier in
Fig. 3, which were fully developed for the off-centered
form of excitation in the radial resonator. These reso-
nances can easily be identified by using the theory of an
open-circuited radial resonator [12]. According to the the-
ory developed in [12], the only likely resonance to be
produced in the 2-4 GHz band is due to the TM,,, radial
mode. Resonances of the next higher order modes (TM,,,
and TM ;) must be excluded since their resonant frequen-
cies are above 6 GHz.

In order to gain further insight into resonances of the
TM,,, mode, another experiment, where the mount was
off-centered with respect to the waveguide and the excita-
tion was off-centered with respect to the radial cavity, was
carried out. A comparison between experimental and theo-
retical results for the input impedance of the mount is
shown in Fig. 7. It can be seen that in this case that
resonances of two TM,,, modes (indicated by two distine-
tive small arcs close to the center of the Smith chart) take
place. One resonance is supported by the off-centered
location of the mount versus waveguide walls and the
second is due to the off-centered excitation of the radial
resonator.

1V. CoNcCLUSIONS

An electromagnetic model of a radial-resonator wave-
guide diode mount with an arbitrary position of the diode
has been presented. The model has been tested through
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Fig. 7. Comparison between theoretical and experimental values of the
input impedance for the off-center excited thick post Dimensions as in
Fig. 2 but with S =31 mm, 7, =35 mm, ¢, =45° Theoretical results
XX~ experimental results —e—o. oX indicate 0.2 GHz frequency
step.

comparison of the results for the input impedance ob-
tained by means of the new model with those obtained
from the earlier developed model or from measurements.

It has been found that for a centrally excitated radial
resonator centrally positioned in a waveguide mount the
new model is not advantageous relative to the simplified
model of [5]. The results for the input impedance obtained
by means of the two models are virtually the same.

The advantage of the new model is significant in situa-
tions in which the axial symmetry of the field in the region
occupied by the mount is evidently disturbed. This is the
case for the centrally excited mounts positioned close to
the waveguide walls or for arbitrarily positioned mounts
but with off-center excitation. A study with the off-center
excited mounts has shown that the radial-resonator mount
supports resonances of the circumferentially varying fields.
Close to such resonant points the input impedance of the
mount is very sensitive to variation in the position of the
excitation, and even small offsets lead to quite large
changes in values of the impedance.

The measurements performed on the physical models
have shown that the new theoretical model quite accu-
rately determines the input impedance in any case of
excitation.

APPENDIX

In an electromagnetic field problem of a rectangular
waveguide being excited by cylindrical sources, it is conve-
nient to consider a rectangular waveguide as a loaded
parallel-plate radial guide. In such a guide an arbitrary
field can be represented by the superposition of radial
waves that are transverse magnetic (TM) or transverse
electric (TE) to the y axis of the guide.
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In the problem of the radial-resonator mount the region
r> R is source free, and in accordance with the
Schelkunoff field equivalence principle [10] the field in this
region can be thought of as due to equivalent currents
flowing on the cylindrical surface r = R. Because of the
presence of the waveguide walls the waves produced by the
currents are scattered. The solution to the scattering of
both type of radial waves is presented below.

A. Scattering of TM Radial Waves

The TM radial waves existing outside the cylinder r = R
can be considered as due to radiation of a surface electric
current of density J flowing on the cylinder » = R in the y
direction. Expression (12) shows that the scattering coeffi-
cient is defined as the magnitude of the nmth harmonic of
the external (to the region r < R) ¢ component of the
magnetic field when the y component of the electric field
at r = R is given by the n/th harmonic of unit magnitude.

Since the external ¢ component of the magnetic field is
related to its internal component and the current density J
by

Hf(r=R)=H,(r=R)+J (A1)
the determination of the scattering coefficients is related to
the determination of the distribution of the current density
J. This statement can further be developed as follows. The
current density J corresponding to E, = E,;, given by the
nith harmonic of unit magnitude, can be expanded into
the series

J e cos (k)

nim

(A2)

L
Jnl = Z

where J,,,, are expansion coefficients.

For the assumed value of the y component of the
electric field at » = R the y component of the electric field
and the ¢ component of the magnetic field are known

throughout the whole volume r < R and are given by

_ (&)
Eyn/ = JI(FnR) eﬂ¢ cos (kyny)

— jky J(T,r)
T A ALY || k .
el Z.T, J,(FnR)e cos y"y)

(A3)
Using (A1)-(A3) it can be shown that the scattering coeffi-
cients s,,,, and the current expansion coefficients are re-
lated by

— jky J/(T R
Spim = s [( s )6lm+Jnlm'
ZBFn Jl(rnR)

(A4)

This last relationship indicates that the determination of
the scattering coefficients can be reduced to the determina-
tion of the expansion coefficients of the current at r = R
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which produces the y component of the electric field at
r = ¢, given by (A3). The equation for unknown expansion
coefficients can be rewritten in the following form:

1 QI (PC)

- —p$

277/0 E,, (J,)e " dg = S’PJ(I‘ R) cos(ky,,y),
p=—-L,--. L (AS)

where E,(J,,) is the y component of electric field at r = ¢
due to a given distribution of the current J,, at r = R.

For J, of the form (A2) expression (AS) generates a
system of linear algebraic equations for the expansion
coefficients J,,,. To avoid any problems with field singu-
larities the radius ¢ in (A5) can be taken in the range
0.2R-0.8R [8]. The expression of the y component of the
electric field due to a given current can be obtained by
using a modal expansion of the field. For the rectangular
waveguide being matched at one arm and loaded at the
other, the y component of the electric field E,, at (xy, z;)
due to a filament of current I,(y)=cos(k,,y) located at
(x,, z,) is given by “

— 2 v~ Tz — 21
]Z3T < | e
(xla 7)) = Z
mn
e~ Kamlz2— 21} e mn(2U+ (21 +22))
L 4RC
kxm mn
'Sin(kxmxl)Sin(kxme)
A 1 — e/ (/D tx)+ylzy =2
+ o, Re|n TG
- cos (ky" y) (A6)
where k., =mmn/A and L2, =k2,+k2,—ki RCis a

reflection coefficient of the load located at a distance u
from the middle position of the mount. Note that the
convergence of the series in (A6) has been accelerated by
adding and subtracting slowly converging residual series
whose sum can be expressed in terms of elementary func-
tions.

The required values of the integrals in (AS) can be
evaluated by using (A6) and a stepwise approximation.
Having solved the system (AS5), the scattering coefficients
can be found using (A4). For n sufficiently large (usually
for n>2) such that I'>?<0 a simplified approach for
determining the scattering coefficients can be used. For
I'? <0 radial waves generated by currents having depen-
dence cos(k,,y) on y decay with distance and therefore
their interaction with waveguide walls can be neglected. In
such a case the rectangular waveguide can be substituted
by a parallel-plate guide and the scattering coefficients can
be approximated by

jk3 Kl/(an)
lm Z3qn Kl(an)

Snim = (A7)

where ¢?= —I'? and K, is a modified Bessel function.
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B. Scattering of TE Waves

The problem of determining the scattering coefficients
for the TE radial waves can be regarded as the dual of that
for solving for the TM waves. The TE radial waves can be
considered as due to a magnetic current located on the
cylinder r = R and flowing in the y direction. The scatter-
ing coefficient f,,,, is defined as the magnitude of the
nmth harmonic of the y component of the magnetic field
while the external ¢ component of the electric field at
r=R is given by the n/th harmonic E,,, of unit magni-
tude. The magnetic current density producing E; = E;,

can be expanded into the series

L
M, 1= Z j‘lnlmejmq> Sin(kyny)

n

(A8)

m=—L

where M, ,, are expansion coefficients.

For the assumed value of the external field at » = R the
internal y component of the magnetic field and the ¢
component of the electric field are given by

< J.(L,r) ,
Hyn= /}_: i n/mme’ #sin(k,,»)
jksZy & J(T,r)

;’ll = r Z

n m=—L

nzmm—)ef"'%in(kyny)- (A9)

By using (22), (23), and continuity conditions it can be
shown that the scattering coefficient and the current ex-
pansion coefficient are related by

jkBZS Jn;(I‘nR)
L, Ju(TR) ™

fnlm = 6[m - (Alo)

The last expression indicates that the determination of the
scattering coefficients can be reduced to the determination
of the expansion coefficients for the current. The latter can
be found by solving the problem for the magnetic current
located at r = R which produces the y component of the
magnetic field at r = ¢ given by (A9).

The equation for the unknown current can be written in
the form

1 27 _ J, (Fnc) -
5;](; Hyn(Mn[)e jp¢d¢=M £ Sln(kyny)a

"7 J,(T,R)
p=—L,--,L (All)

where H,,(M,,) is the y component of the magnetic field
at r = ¢ due to the current M,, at r = R. For M, of (A8)
expression (All) generates a linear system of algebraic
equations for the coefficients M,,, .

To evaluate the integrals in (A11) a stepwise approxima-
tion and a modal expansion of the y component of the
magnetic field can be used. In this case the required y
component of the magnetic field at (x,z;) due to a
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filament of the magnetic current M,(y)=sin(k,,y) at
(x,, z,) is given by ‘

o ( ) jI‘ﬂZ o | o= Lmnlza—al
X1, 21) =
- AZ3k3 m=1 an
e kmlna—a| e DnnQut(z+22))
— —-RC
kxm rmn
- COs (kxmxl) cos (kxmx2)
1 [ e Tonlz2~al e~ TonQut(z1+23))
+= _RC
2 FOn I10n

A
— — Relln((1= e//Da+x)+)lz—=)
oy Relin((1-e )

(1- e/<w/4)((x1—x2)+/|z2—z1|>))] sin(kv,,y).

(A12)

The convergence of the series in (A12) has been acceler-
ated by adding and subtracting the slowly converging
residual series.

Having determined the expansion coefficients for the
current the scattering coefficients are found using (A10).
Similarly, as for the TM waves, the scattering coefficients
of the higher order TE waves can be found by using a
parallel-plate approximation. For waves such that T? <0
the scattering coefficients f,,,, are given by

jqn Kl(QnR)

fn m=8m——.7—‘
! ! kyZy K| (‘]nR)

(A13)
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